metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhan Hu,^a Li-Qin Dang,^b Duan-Hai Bao^a and Yong-Lin An^a*

^aDepartment of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China, and ^bInstitute of Chemistry for Functionalized Materials, Faculty of Chemistry and Chemical Engneering, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail: ylan@dlut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.027 wR factor = 0.047 Data-to-parameter ratio = 24.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $[Co(C_2H_8N_2)_3]AsS_4$, was synthesized under solvothermal conditions in ethylenediamine (en) at 413 K. The compound consists of octahedral $[Co(en)_3]^{3+}$ cations and tetrahedral AsS_4^{3-} anions.

Tris(ethylenediamine)cobalt(III) tetrathioarsenate(V)

Received 11 September 2006 Accepted 24 September 2006

Comment

Polychalcogenidometalates possess diverse and interesting structural chemistry, and exhibit useful physical and chemical properties which are promising for application in modern technologies (Manos *et al.*, 2005). Thioarsenates have been prepared using molten alkali-metal polychalcogenide flux techniques and high-temperature solid-state techniques (Iyer & Kanatzidis, 2002, 2004), and some have been synthesized in lower-temperature solvothermal/hydrothermal reactions (Chou & Kanatzidis, 1994*a*,*b*, 1995; Jia *et al.*, 2006; Fu *et al.*, 2005; Kanatzidis & Chou, 1996). The title compound, (I), was synthesized under solvothermal conditions using ethylene-diamine as the solvent.

Compound (I) (Fig. 1) consists of octahedral $[Co(en)_3]^{3+}$ cations and tetrahedral AsS_4^{3-} anions. The coordination geometry of Co is slightly distorted from octahedral, reflected in the *trans* N-Co-N angles of 173.79 (11)–175.77 (11)°

© 2006 International Union of Crystallography All rights reserved **Figure 1** The asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level. H atoms have been omitted. (Table 1). In the AsS_4^{3-} anions, the As-S distances and S-As-S angles (Table 1) demonstrate a significant distortion from an ideal tetrahedral geometry.

Experimental

The title compound was obtained by a typical solvothermal synthetic procedure. NiCl₂·6H₂O (0.027 g), arsenic (0.014 g) and sulfur powder (0.022 g) were placed in a glass tube with 2 ml of ethylenediamine and stirred for 5 min. The mixture was sealed in a Teflon-lined stainless steel bomb and heated at 413 K for 5 d. After cooling slowly to ambient temperature, the products were washed with ethanol then water, and orange block crystals of (I) were obtained.

Crystal data

 $[Co(C_2H_8N_2)_3](AsS_4)$ $M_r = 442.40$ Tetragonal, $P4_2bc$ a = 15.2781 (19) Å c = 13.559 (4) Å V = 3165.1 (10) Å³ Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{\rm min} = 0.384, T_{\rm max} = 0.576$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.047$ S = 0.973981 reflections 163 parameters H-atom parameters constrained $D_x = 1.857 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 3.68 \text{ mm}^{-1}$ T = 293 (2) KBlock, orange $0.30 \times 0.18 \times 0.15 \text{ mm}$

18629 measured reflections 3981 independent reflections 3343 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$ $\theta_{\text{max}} = 29.1^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0093P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.42 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1845 Friedel pairs Flack parameter: 0.002 (7)

Table 1

Selected geometric parameters (Å, °).

As1-S1	2.1687 (8)	Co1-N2	1.968 (2)
As1-S2	2.1761 (10)	Co1-N3	1.960 (3)
As1-S3	2.1692 (9)	Co1-N4	1.970 (3)
As1-S4	2.1520 (8)	Co1-N5	1.969 (2)
Co1-N1	1.963 (2)	Co1-N6	1.960 (3)
S1-As1-S2	106.70 (4)	S3-As1-S4	110.93 (4)
S1-As1-S3	106.00 (4)	N3-Co1-N6	174.89 (11)
S1-As1-S4	111.97 (3)	N2-Co1-N4	175.77 (11)
S2-As1-S3	113.85 (4)	N1-Co1-N5	173.79 (11)
S2-As1-S4	107.38 (4)		

H atoms were positioned geometrically with C–H = 0.97 Å and N–H = 0.90 Å and allowed to ride during subsequent refinement with $U_{\rm iso}({\rm H}) = 1.2 \ U_{\rm eq}({\rm C,N})$.

Figure 2

Perspective view of the unit-cell contents of (I). H atoms have been omitted.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

We thank the Natural Science Foundation of China for supporting this work (20071006).

References

Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and

- SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Chou, J. H. & Kanatzidis, M. G. (1994a). Inorg. Chem. 33, 1001–1002.
- Chou, J. H. & Kanatzidis, M. G. (1994a). Inorg. Chem. 33, 5372–5373.
- Chou, J. H. & Kanatzidis, M. G. (1995). *Chem. Mater.* **7**, 5–8.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Fu, M. L., Guo, G. C., Cai, L. Z., Zhang, Z. J. & Huang, J. S. (2005). Inorg. Chem. 44, 184–186.
- Iyer, R. G. & Kanatzidis, M. G. (2002). Inorg. Chem. 41, 3605-3607.
- Iyer, R. G. & Kanatzidis, M. G. (2004). Inorg. Chem. 43, 3656-3662.
- Jia, D. X., Zhao, Q. X., Dai, J., Zhang, Y. & Zhu, Q. Y. Z. (2006). Z. Anorg.
- Allg. Chem. 632, 349–353. Kanatzidis, M. G. & Chou, J. H. (1996). J. Solid State Chem. 127, 186–201.
- Kanatzidis, M. G. & Chou, J. H. (1996). J. Solid State Chem. 127, 186–201.
- Manos, M. J., Iyer, R. G., Quarez, E., Liao, J. H. & Kanatzidis, M. G. (2005). Angew. Chem. Int. Ed. 44, 3552–3555.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.